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ELEMENTS MATHEMATIQUES 
POUR L’ELECTROMAGNETISME 

 
 
 
Les charges électriques peuvent être réparties sur une ligne, une surface ou dans un volume. Elles 
peuvent aussi présenter des éléments de symétrie. Nous verrons que  les champs qu’elles créent 
dépendent en général de plusieurs directions et présentent des symétries.  
D’où la nécessité et l’intérêt d’une connaissance des fonctions vectorielles à plusieurs variables. 
  
L’analyse vectorielle est indispensable pour traiter des champs dans l’espace, et aussi dans le 
temps en général dans le cadre de l’Electromagnétisme. 
 
Nous allons introduire des outils mathématiques, qu’il faut bien considérer en tant qu’outils, qui vont 
cependant prendre progressivement plus de signification avec l’avancement des concepts et des 
notions physiques. 
 
 
I- CHAMP  SCALAIRE ET CHAMP VECTORIEL 
 

On rapporte l’espace à un repère cartésien   ����, � ��, ���	. 
 

1- Définition 
 
Pour définir un champ scalaire, il suffit d’un nombre. Exemple : la masse, la charge électrique… 
Un champ scalaire  f  est en général variable le long des directions de l’espace. En un point 
���, ��, ��	, où ���, ��, ��	 sont les coordonnées cartésiennes de M,  
 
 �
������� 
  �������� � �������� � �������� 

  
on a : 
 ��
	 
 ����, ��, ��	 

 
Pour définir un champ vectoriel, un nombre ne suffit pas. Il faut ajouter l’orientation, c’est-à-dire 
une direction et un sens. Exemple : la vitesse, la force… 
Un champ vectoriel varie aussi en général avec les coordonnées de l’espace : 
 ������, ��, ��	 
 �����, ��, ��	��� � �����, ��, ��	��� � �����, ��, ��	��� 
 
Pour les non initiés, il faut tenir compte de cette difficulté : comprendre qu’un scalaire n’est pas 
orienté selon une direction, lorsque ce même scalaire varie selon cette direction. 
 

2- Dérivées partielles 
 

Les dérivées partielles caractérisent la variation locale d’une fonction à plusieurs variables : 
pentes. (Les fonctions concernées sont différentiables)  
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Pour voir uniquement le comportement d’une fonction selon une direction, il faut « oublier » sa 
variation selon les 2 autres directions de l’espace. 
 
 
 ����� : dérivée partielle par rapport à ��. On dérive la fonction en considérant �� et �� constants 

 ����� : dérivée partielle par rapport à ��. On dérive la fonction en considérant �� et �� constants 

 ����� : dérivée partielle par rapport à ��. On dérive la fonction en considérant �� et �� constants 

 
 

3- L’opérateur ���� 
 
C’est un vecteur dont les composantes sont les 3 opérations de dérivées partielles. Il agit sur les 
champs. 

 ��� 
  ���� ������ � ���� ������ � ���� ������ 

 
Appliqué sur un champ scalaire, cet opérateur génère un champ vectoriel appelé gradient : 
 ���� 
  ����� ������ � ����� ������ � ����� ������ 

 
 

4- Différentielle 
 
On suppose l’existence (Pfaff). 
 �� 
 ����� ��� � ����� ��� � ����� ���  

 

Constatant que les ��� sont les composantes du vecteur déplacement, 
 
 ��
������� 
  ��������� � ��������� � ��������� , 

 
 

on peut voir facilement que la différentielle de f est un produit scalaire : 
 �� 
 ���� .  ��
������� 
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II- COORDONNEES CARTESIENNES 
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Le vecteur déplacement élémentaire : 
 �
������� 
  ��� ��� � ��� ������� ��� 
 
L’élément de volume : 
 �� 
 ��������� 
 

Vecteur gradient d’un champ scalaire �� !,  ",  #	 : 
 
 $��� � 
  ����� ������ � ����� ������ � ����� ������ 

 

Divergence d’un champ de vecteurs  %���� !,  ",  #	 : 
 ������, ��, ��	 
 �����, ��, ��	��� � �����, ��, ��	��� � �����, ��, ��	��� 
 
 $��� . ��� 
  ������ � ������ � ������ 

 
 

Rotationnel d’un champ de vecteurs  %����� !,  ",  #	 : 
 

 

$���&��� 
 '������ ( ������)  ��� ( '������ ( ������)  ��� � '������ ( ������)  ��� * ++ ��� ��� �������
����

������ �� ��
++ 
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Le laplacien d’un champ scalaire �� !,  ",  #	 : 
 
 ∆ � 
 ������� � ������� � ������� 

 
 

Le laplacien d’un champ de vecteurs  %����� !,  ",  #	 : 
 

 ∆��� 
 ∆����� � ∆����� � ∆����� 
 
C’est-à-dire : 
 ∆��� 
 -�������� � �������� � �������� . ��� � -�������� � �������� � �������� . ��� � -�������� � �������� � �������� . ��� 

 
 
III- COORDONNEES CYLINDRIQUES 
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 �
������� 
 / �0���� � �������� 

 
Le vecteur déplacement infinitésimal : 
 �
��� 
 �/  ����0 � /�1 ��2���� ��� 
 
L’élément de volume : 
 �� 
 �/ /�1 ��� 
 
Vecteur gradient d’un champ scalaire : 
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 $��� � 
  ���/  ��0 � ��/�1  ��2 � �����  ��� 

 
 
Divergence d’un champ de vecteurs : 
 $��� . ��� 
  ��0�/ � ��2/�1 � ������ 

 
 
Rotationnel d’un champ de vecteurs : 
 

$���&��� * 1/ ++��0 /��2 �����/ ��1 �����0 /�2 ��
++ 

 
 
Le laplacien d’un champ scalaire : 
 

 ∆ � 
 1r ∂∂r 'r ∂f∂r) � 1r� ∂�f∂θ� � ������� 

 
Le laplacien d’un champ de vecteurs : 
 
 ∆��� 
  7∆�0 ( 890� ( �8:0��2; ��0 � 7∆�2 ( 8:0� � 2 �890��2; ��2 � ∆�����  

 
 
IV- COORDONNEES SPHERIQUES 
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Le vecteur déplacement infinitésimal : 
 �
��� 
 �/ ��0 � /�1 ��2 � / =>?1 �@ ��A 

 
 
L’élément de volume : �� 
 /� =>?1�/ �1�@    

 
 

Exemple d’une sphère de rayon R  
 

   B 
 C C C /� =>?1�/ �1�@ 
 43  πR �   �G
AHI

G
2HI

J
I  

 
Vecteur gradient d’un champ scalaire : 
 $��� � 
  ���/  ��0 � 1/ ���1  ��2 � ��/ =>?1�@  ��A 

 
Divergence d’un champ de vecteurs: 
 $��� . ��� 
  1/ ��/��0	�/ � 1/ =>?1 ��=>?1 �2	�1 � 1/ =>?1 ��A�@  

 
Rotationnel d’un champ de vecteurs: 
 

$���&��� * �0� K�L2 +��0 / ��2 / =>?1 �����0 ��2 ��A�0 /�2 / =>?1 �A
+  

 
 
Le laplacien d’un champ scalaire : 
 

 ∆ � 
 �0� ��0 7/� ���0; � �0 �K�L2 ����2� � �������   
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Le laplacien d’un champ de vecteurs 
 
 ∆��� 
  7∆�0 ( 890� ( �8:0��2; ��0 � 7∆�2 ( 8:0� � 2 �890��2; ��2 � ∆�����  
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V- LES INTEGRALES SPATIALES 
 

1- Circulation d’un champ de vecteurs 
 

On appelle circulation du champ ����
	 le long de la courbe C, l’intégrale : 
 

M 
 C ����
	 . �N����
O  

 

La courbe C doit être orientée.  La circulation P dépend en général du chemin suivi et cela a des 

conséquences intéressantes en Physique. On reconnaît le travail mécanique si le vecteur ����
	 
correspond à une force. 
 

 
 
 

Si la courbe C est fermée, on note cette intégrale : 
 

M 
 Q ����
	 . �N����
R  

 
Pas de panique ! Les problèmes physiques traités en Electrostatique de 1ère année se ramènent 
souvent à des situations où cette intégrale se calcule très simplement. Elle se réduit à l’intégrale 
d’une fonction scalaire d’une seule variable. 
 
 

2- Flux d’un champ de vecteurs 
 

a- Surfaces 
 

Le vecteur surface élémentaire est donné avec un vecteur unitaire ?�� perpendiculaire à la surface 
au point considéré.  �S����� 
 �S ?�� 
 

- Si la surface est fermée, ?�� est orienté par convention vers l’extérieur. 
 

�N���� 
����
	 

C M 
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- Pour une surface non fermée, l’orientation du contour sur lequel 

s’appuie la surface définit l’orientation de  ?�� : on utilise la règle du tire 
bouchon de Maxwell. 

 

 
b- Flux 

On appelle flux du champ vectoriel  ����
	 à travers la surface S, l’intégrale :  
 

Φ 
 T ����
	 . �S�����
U  

 
Pas de panique ! Les problèmes physiques traités en Electrostatique de 1ère année se ramènent 

souvent à des situations où ��
	 est constant sur la surface d’intégration. 
 
 

VI- THEOREMES 
 

1- Théorème de la divergence ou de Green-Ostrogradsky 
 
S est la surface fermée qui délimite le volume D. 
 
 

?�� 

?�� 
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V $���W . � ������ 
 X ���U . �S� 
 

 
 

2- Théorème du rotationnel ou de Stokes 
 
C est la courbe (fermée) qui délimite la surface S. 
 
 

 
 
 
 
 
 

 
 

TY$��� Z ���[U . �S����� 
 Q ���R  . �N���� 

 
 

3- Théorème du gradient 
 

V $���W � �� 
  T � �S�����
U  

 
 

VII- FORMULES LOCALES 
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S 

D 

�N� 

dS�� 
C S 
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� � � � � � �

 

VIII- ANGLE SOLIDE 
 

Soit la surface dS centrée autour du point M. O est le point d’observation : �̂� 
 _`��������_` . 

L’angle solide élémentaire pour voir l’élément dS à partir du point O est  : 
 �Ω 
 aU������ .b���0�   ,  avec   �S����� 
 �S?�� 

 
 
 
 

 

IX- 

c
 

 
 

L’angle pour observer une surface S finie : 
 

Ω 
 T �S �?�� . �̂�	/�U  

  
On peur montrer facilement que :  
 

- L’angle solide pour observer un plan infini est égal à 2d. 
- Et que pour observer une sphère (tout l’espace) l’angle solide 

correspond à 4d.  
 
L’unité de l’angle solide est le stéradian.  

�̂� ?�� 

O 

�S 

M 
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CHAMP ELECTROSTATIQUE 
 
 

I- CHARGES 
 
La charge électrique est une propriété scalaire des particules élémentaires. Elle peut être positive, 
négative ou nulle, et s’exprime en Coulomb (C). C’est une grandeur quantifiée, c’est-à-dire que 

toute charge Q est telle que |f| 
 ?�, où � 
 1,6 . 10i�j k  est la charge élémentaire, et n  un 
entier naturel. 
 
La charge peut être répartie de 2 manières : discrète ou continue. 
 
  Répartition discrète 
 
 l 
 m l��  

 
  Répartition continue  
 
 

- Distribution volumique 
 

 
 

 
 

 
 
 
 
 

 
Au voisinage d’un point  P du volume D, on a la densité : 
 n�o	 
  �l�� 

La charge de tout le volume D est :  
 

l 
 V n�o	��W  

 
 

- Distribution surfacique 
 

Au voisinage d’un point P de la surface S, on a la densité : 
 p�o	 
 �l�S 

dτ 
D 
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La charge portée par toute la surface S est : 
 

l 
 T p�o	 �SU  

 
 
 

- Distribution linéique 
 
 

 
 

Au voisinage d’un point P de la ligne C on a la densité : 
 q�o	 
 �l�N  

 
La charge portée par toute la courbe C est : 
 

C dl 

�S S 
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l 
  C q�o	 �NR  

 
 

II- FORCE DE COULOMB 
 

L’interaction électromagnétique est l’une des 4 interactions fondamentales. En général, les 
charges peuvent être en mouvement et leurs vitesses varient dans le temps. L’interaction 
électrostatique est limitée aux charges « considérées » fixes. C’est donc un cas particulier de 
l’interaction électromagnétique. 
 
 

Considérons 2 charges ponctuelles fixes Aq  et Bq , séparées par une distance ABr  : 

La force exercée par Aq sur Bq est : 

 

 r�s/u 
  vwvx 9wx����������yGz{ 0wx�  ( )
9

12
0

1 10
8,854.10 /

4 9
F mε

π

−
−= =

 
 /su������  étant dirigé de A vers B, l’orientation de la force dépend donc des signes des charges. 
 
C’est une loi. Elle se vérifie expérimentalement. 
 
On a évidemment (Principe de l’action et de la réaction – Newton) : 
 r�u/s 
  lslu 0xw���������4d|I /su� 
 ( r�s/u 

 
 
III- CHAMP ELECTROSTATIQUE CREE PAR UNE CHARGE PONCTUELLE  
 

Si on « factorise la perturbation » que crée Aq  dans l’espace où se trouve  Bq , on a : 

 

( )/ 3
04A B

A B AB
q q B A

AB

q q r
F q E B

rπε
= =

�
� �

 
 

( )AE B
�

 est le champ électrostatique créé par la charge Aq  au point B. 

 
De manière générale, une charge placée en O crée en un point M  le champ électrostatique 
 

( ) 3 2
0 04 4

rqeqr
E M

r rπε πε
= =

��
�

 , où  /� 
 �
������� 
 / �0���� 
E  s’exprime en V/m 
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IV- CHAMP CREE PAR UNE DISTRIBUTION CONTINUE DE CHARGE 
 
Il ne faut jamais oublier que ce que donne la loi de Coulomb, de laquelle est issu le concept du 
champ électrostatique, est relatif à des charges ponctuelles.  
 
Comment faire alors pour les charges réparties ? 
 
L’idée est d’assimiler le champ élémentaire créé par un élément de charge dq au champ créé par 
cette charge considérée comme charge ponctuelle : 
 �}���
	 
  avyG~{0� �̂�  , où �̂�  est le vecteur unitaire dirigé de la position de dq vers M. 

 
 �}���
	 est le champ élémentaire. 

 
 

 
 
 
 
 
 
 
 

 
Il suffit d’intégrer sur le domaine chargé, pour avoir le champ créé par la distribution. 
Examinons les 3 cas. 

 
1- Distribution sur une courbe  C :  

 �l 
 q�N /� 
 /��0 

 
 

( ) 2
04

r

C

dle
E M

r

λ
πε

= ∫
�

�

 
   

C dl 

M /� �}������

�}�� 
dq 

/� 
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Exemple : champ créé par un fil infini, à une distance  x. 
 
Le champ est perpendiculaire  au fil. Car chaque élément dl a son symétrique par rapport à 
l’origine, intersection du fil et de l’axe x. 
 
 
 
 
 
 
 
 
 
 
 
 
Etapes du calcul : 
 
 -Projeter le champ selon l’axe x. 

-Déterminer toutes les variables en fonction d’une seule, par exemple  1, car elles ne sont 
pas indépendantes. 

- Intégrer sur le fil, c’est-à-dire pour 1 de ( G� à  
G�. 

 
On trouve : 
 

( )
02 xE M e
x

λ
πε

=
� �

. 

 
2- Distribution surfacique  

  �l 
 p�S 
 

( ) 2
04

r

S

dSe
E M

r

σ
πε

= ∫∫
�

�

 
 
Exemple : champ créé par un plan infini, à une distance z. 
 
 
 
 
 
 
 
 
 
 
 
Chaque élément ayant son symétrique par rapport à l’origine, donc le champ est selon l’axe Oz. 
 

�}�� ������ 
1 

}�� 

x 

x 

z 

y 

�}�� 
/� 

z 
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Etapes du calcul : 
 
 -  Projeter le champ selon l’axe Oz. 

- Déterminer toutes les variables en fonction d’une seule, car elles ne sont pas 
indépendantes. 
-  Intégrer. On peut faire le calcul pour un disque de rayon  R et faire tendre ensuite ce 
dernier vers l’infini. 
 

On trouve : 
 

( )
02 zE M e

σ
ε

=
� �

 

 
 

 

Champ électrostatique 

02

σ
ε

 

02

σ
ε

−  

z 

 
 

Noter la discontinuité du champ pour cette distribution surfacique. 
 

3-  Distribution volumique dans un domaine D   
 �l 
 n�� 

 

( ) 2
04

r

D

d e
E M

r

ρ τ
πε

= ∫∫∫
�

�

. 

 
Le calcul est souvent long et compliqué pour ce type de distributions. Heureusement,  il y a 
d’autres méthodes (voir plus loin).  
 
 
 
 
V- PRINCIPE DE CURIE 
 
« Lorsque certaines causes produisent certains effets, les éléments de symétrie des causes 
doivent se retrouver dans les effets produits ; lorsque certains effets révèlent une certaine 



© Saïd KOUTANI said@koutani.net Page 21 
 

dissymétrie, cette dissymétrie doit se retrouver dans les causes qui leur ont donné 
naissance. » 
Admirons la puissance du principe !! 
 

 
Conséquences 

 
Le champ électrostatique doit présenter les mêmes éléments de symétrie que les charges qui lui 

ont donné naissance. En un point M de l’espace, le champ E
�

 appartient aux plans de symétrie 
passant par M. 
 
 

Méthode 
 
Il suffit de trouver 2 plans de symétrie passant par M. Le champ électrostatique est selon la 
direction-intersection. 

 

Exemple 
 
Distribution volumique d’un cylindre infini : 
 
 
 
 
 

 
 

 

 

 

 
 
 
VI- LIGNES DE CHAMP 

 
1- Définition  

 
Ce sont les courbes tangentes en chacun de leurs points au vecteur champ électrostatique. 

 
 

2- Equations 

 }�� 

Direction radiale du champ 
électrostatique  pour le point M considéré 

M 
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En coordonnées cartésiennes :   
a��� 
 a��� 
 a��� 

 

En coordonnées cylindriques :   
a0�9 
 0a2�: 
 a���  

 

En coordonnées sphériques :    
a0�9 
 0a2�: 
 0 ��� 2aA��  

 
 
VII- THEOREME DE GAUSS 
 
Ce théorème permet souvent un calcul simple du champ électrostatique. 
 
 

1- Flux du champ électrostatique à travers une surface 
 
Prenons le cas d’un champ créé par une charge ponctuelle. 

 

Φ 
 T l �̂���4d�I/�U  . �S� 
 T l4d�IU  �Ω 
  l4d�I Ω 

 

   avec   �S����� 
 �S?�� 
 
 
 

 
 
 
 

 

 

X- 

c
 

 
 

Cas d’une charge électrique  extérieure à la surface fermée  
 

On considère une charge ponctuelle q placée en O. 
 
 
 
 
 

 
 

�̂� 
?�� 

O 

�S 

Direction du vecteur ̂�� ?������ ?������ 
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On voit que le flux dans ce cas est nécessairement nul, tenant compte de l’alternance des signes à 

cause des angles entre   ?����� et �̂� , et de la valeur du rapport  �aU ��� 20� �. 
   
Cas d’une charge électrique  intérieure à la surface fermée  

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Là, le flux est différent de zéro. Et l’angle solide  pour voir toute la surface fermée est égal à 4d.  
 
On a alors :  

 

Φ 
 X }�� .U  �S� 
  l4d�I 4d 

 
 

2- Théorème de Gauss 
 

Le flux du champ électrostatique  à travers une surface fermée S est égal au rapport de la charge 

intérieure  l�L�  à S, sur la constante  �I .  
Ce qui s’écrit : 
 

X }�� .U  �S� 
  l�L��I  

 
Intérêt : 
 

Ce théorème sert en particulier au calcul du champ électrostatique. 
 

Procédure : 

O 

O 

?������ �̂� 
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- Déterminer les orientations de }�� dans l’espace. Le principe de Curie est d’une grande 
utilité. 

- Trouver les surfaces par rapport auxquelles le champ est parallèle ou perpendiculaire. Ce 
qui permettrait de déterminer la surface fermée impliquant une grande économie de 
calculs. 

- Calculer l’intégrale. Et finalement en déduire  }��. 
 
 

3- Expression locale du Théorème de Gauss 
 

 

X }�� .U  �S� 
  VY $���. }��[W′

 �� 
 VY $���. }��[W  �� 
 l�L��I 
 1�I V n ��W  

 
 

 
 
 

L’expression ci-dessus  est vraie quel que soit le couple �S, B	. On a donc : 
 $���. }�� 
 n�I 

 
C’est l’une des équations locales de l’Electrostatique. 
 
 
VIII-  CIRCULATION DU CHAMP ELECTROSTATIQUE  

 

 
 

�N���� 
}�� 

Charge ponctuelle  q 

r 

A 

B

D’ 
D 

Charge 
Vide 

S 

S’ 
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C }��. �N�R 
 C }��. �/�R 
  l4d�I C /�. �/�/�R  

 
 

Avec  /�� 
 /� , qui implique :  /�. �/� 
 / �/, on a : 
 

C }��. �N�R 
 ( l4d�I C �//�R 
 l4d�I �1/�0w
0x

 

 
Si la courbe C est fermée et S une surface s’appuyant sur C : 
 
 

Q }��. �N� 
 R 0 

 
 

 
 

 
Avec le théorème de Stokes, on déduit de l’équation précédente : 
 

TY$���&}��[ . �S�����
U 
 0 

 

Quelque soit le couple �k, S	, ces intégrales sont nulles. On a donc : 
 $���&}�� 
 0 

 
Cette équation locale est l’une des équations  de l’Electrostatique. 
 
La conséquence importante de l’équation ci-dessus est l’existence d’une fonction scalaire V, telle 
que : 

�N���� 

�S����� 
S 

C 

Remarquer l’orientation de la 
surface par rapport à celle du 
contour C.  
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 }�� 
 ($��� � 
 

V est appelé potentiel électrostatique. Il s’exprime en Volts (V). 
Cette fonction scalaire est continue à l’interface entre 2 milieux différents. 
 
 
IX- EQUATIONS DE PASSAGE DU CHAMP ELECTROSTATIQUE ENTRE 

DEUX MILIEUX 
 
Composante tangentielle : 
 
On montre qu’à l’interface des deux milieux : 
 
 - La composante tangentielle du champ  électrostatique est toujours continue. 
 
 

 
La surface Σ sépare  deux milieux 1 et 2. Les points 
� et 
y sont très proches, il en est de 

même pour l’autre couple 
� et 
�. 
 
Examinons la continuité, en considérant la circulation le long de la courbe C. 
  

Q }��. �N� 
 R 0 

Ce qui implique : 
 }������. 
�
������������� � }������. 
�
y������������ 
 0 

 }������. �� ( }������. �� 
 0 
 

Composante normale : 
 

Soit Vδ  un petit volume centré sur le point M. Appliquons le théorème de Gauss sur la surface 

englobant Vδ . 
 


� 
y 


� 
� 

�� 
C 

Σ 
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La hauteur du cylindre est considéré comme infiniment petite par rapport rayon. 
 

( ) int
2 1

0 0

. n n

S

q S
E dS E E S

σδδ
ε ε

= − = =∫∫
����

�  

 

Ce qui montre que la composante normale de E
�

 est discontinue si la surface de séparation qu’il 
traverse présente une densité de charge surfacique. Comme exemple, le milieu 1 peut être le vide 
et le milieu 2 un conducteur chargé. 
 

( )2 1
0

n nE E
σ
ε

− =  

 
X- POTENTIEL ELECTROSTATIQUE 
 
Le potentiel a été introduit à partir : 
 }�� 
 ($��� V 
 
En coordonnées cartésiennes on a : 
 

 
 �� 
 �8�� �� � �8�� �� � �8�� �� 
  Y$��� V[. �
������� 
 (}��. �
�������   

 

1 2 3
1 2 3

,  et  
V V V

E E E
x x x

    ∂ ∂ ∂= − = − = −     ∂ ∂ ∂     
 

 

.
B B

B A

A A

dV V V E dr= − = −∫ ∫
����

 

 

Si on calcule simplement la primitive .V E dr= −∫
����

, il apparaît une constante d’intégration à 

déterminer avec les conditions aux limites, du type : 
 

M 

1 2 

}��� 

}���L 

}���� 
 

}���L 
 �S 

�� 

}���� 
 

}��� 
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- ( ) 0V ∞ =  lorsqu’il n’existe pas de charges à l’infini. 

- La continuité du potentiel en des points particuliers du système étudié. 
 
 

1- Potentiel créé par une charge ponctuelle à une distance r  
 

( )
04

q
V M

rπε
=  

 
On va d’abord montrer que les surfaces équipotentielles sont toujours perpendiculaires aux lignes 
de champ.  
 
Exemple d’une charge ponctuelle positive : 
 
 

 

Lignes de Champ 
Surfaces équipotentielles : sphères 
concentriques 

q>0 

 
 
 

2- Surfaces équipotentielles 
 

Sur la surface équipotentielle on a : 
 �� 
 (}��. �
������� 
 0 
 
On voit donc que les lignes de champ sont perpendiculaires aux surfaces équipotentielles en tout 
point. 
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3- Potentiel créé par une distribution continue de charge 
 

 Distribution linéique sur une courbe C :   ( )
04C

dl
V M

r

λ
πε

= ∫  

 

 Distribution surfacique sur S :    ( )
04S

dS
V M

r

σ
πε

= ∫∫  

 

 Distribution volumique dans un domaine D :  ( )
04D

d
V M

r

ρ τ
πε

= ∫∫∫  

 
4- Equation de Poisson 

 

Il suffit d’injecter dans l’équation locale de Gauss l’expression : E V= −∇
� �

 : 
 

0

V
ρ
ε

∆ =−
 

 

En coordonnées cartésiennes:  

2 2 2

2 2 2
1 2 3 0

V V V

x x x

ρ
ε

∂ ∂ ∂+ + = −
∂ ∂ ∂

 

 
 

  

V= constante 

�
������� }�� 
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ENERGIE ELECTROSTATIQUE 
 
 
 
I- TRAVAIL DES FORCES ELECTROSTATIQUES ET ENERGIE 

POTENTIELLE 
 
Le travail élémentaire de la force électrique s’écrit : 
 

1 2 31 2 3x x xW dW q E dx E dx E dxδ  = = + +   

 
Le travail effectué lors du déplacement d’un point  A à un point B est donc : 

 

( )A BW q V V= −  

 
 
La circulation  de la force est nulle, car : 
 

Q r�R  . �N� 
 l Q }��R  . �N� 
 0 

 

Ce qui implique que r� 
 ($����� , où
 
 �� est une fonction scalaire correspondant à l’énergie 

potentielle. 
 
Mais par définition, l’énergie potentielle de la charge est le travail fourni par l’expérimentateur 
pour l’amener de l’infini à sa position. Cette énergie est restituée à l’expérimentateur au retour de 
la charge à sa position initiale.  
 
Pour une variation élémentaire, on a : 
 d�� 
 (δ� 

 
 

L’énergie potentielle d’une charge dans un champ extérieur est : 
 �� 
 l� � � 

 
La constante K est nulle, s’il n’y a pas de charges à l’infini.  
 
 
 
II- DISTRIBUTIONS DE CHARGES 

 
1- Distribution discrète  

 

Pour N charges ponctuelles l�, on montre facilement que l’énergie potentielle s’écrit 
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�� 
 12 m l� m l�4d�I/��
�

� � 
 12 m l�
�
�

�
� ��
�	 

 

 ��
�	 est le potentiel au point 
� . 
 
 

2- Distribution continue 
 

Lorsqu’il s’agit de distributions continues de charges, la contribution de dq est : 
 
 ��¡ 
 12 �l ��
	 

 
Pour une charge finie répartie de façon continue : 
 

1
         pour une distribution linéique

2

1
      pour une distribution surfacique

2

1
     pour une distribution volumique

2

p

C

p

S

p

D

E V dl

E V dS

E V d

λ

σ

ρ τ

=

=

=

∫

∫∫

∫∫∫
 

 
C’est cette énergie qui peut nous expliquer la cohésion du cristal NaCl, constitué d’un 
enchainement régulier de charges positives et négatives. 
 

 
 

III- Localisation de l’énergie électrostatique 
 
Prenons le cas d’une distribution volumique  de charges dont l’étendue est finie, et étendons 
l’intégration à tout l’espace : 
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�� 
 �I2 X � }��U . �S� � �I2 V }�
¢K¡£¤¢ �� 

 
 

 
 
Or la première intégrale est nulle car le potentiel est nul à l’infini. On a donc : 
 

�� 
 �I2 V }�
¢K¡£¤¢ �� 

 
 
 
 
D’où la densité d’énergie stockée dans l’espace : 
 
 d���� 
 �I}�2  
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DIPOLE ELECTROSTATIQUE 
 
 
 

I- DEFINITIONS 
 

1- Moment dipolaire 
 

Un dipôle électrostatique est un système de deux charges ( ),q q− +  séparées par une distance d. 

On caractérise le dipôle par son moment dipolaire, celui-ci est donné par :  
 ¥� 
 l� ��� 
 

Où ��� est le vecteur unitaire orienté de la charge – vers la charge +. 
 

2- Dipôle permanent 
 

Existence en l’absence d’un champ extérieur. Molécule avec un dipôle invariable. 
 

3- Dipôle induit 
 
Le moment dipolaire est nul. Mais un champ électrique polarise l’atome ou la molécule. 
 
Exemple : L’atome d’hydrogène. On dit que l’atome est polarisable. Son moment dipolaire 
s’exprime selon : 
 ¥� 
 ¦�I}′���� 

 

où ¦ est la polarisabilité de l’atome, qui s’exprime en §�. 
 
 

II- POTENTIEL CREE PAR UN DIPOLE A LONGUE DISTANCE  
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Il y a invariance autour de l’axe Oz. 
 ��
	 
 l4d�I ' 1̈
 ( 1©
) 

 
 

��
	 
 l4d�I/ ª-1 � «�4/� ( «/ cos 1.i�� ( -1 � «�4/� � «/ cos 1.i��¯ 

 

On fait un développement limité au 1er ordre en 
£0 : 

 
 ��
	 
 ¥ cos 14d�I/� 
 ¥�. /�4d�I/� 

 
Ce potentiel décroît donc plus vite que celui créé par une charge ponctuelle. 

 
 

III- CHAMP ELECTROSTATIQUE CORRESPONDANT 
 
 }�� 
 }0�0���� � }2�2����� 
 

 }0 
 ( ���/ 
 ¥ cos 12d�I/� 

 }2 
 ( 1/ ���1 
 ¥ sin 14d�I/� 

 
Ou encore, en partant directement de la relation vectorielle entre le champ et le potentiel : 

M 

-q 

+q A B «2 
O 

r 

1 

z 
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 }�� 
 14d�I
3�¥�. /�	/� ( /�¥�/²  

 
 
 

IV- LIGNES DE CHAMP ET SURFACES EQUIPOTENTIELLES 
 

En coordonnées polaires, rappelons l’équation des lignes de champ : 
 �/}0 
 /�1}2  

 
L’intégration conduit à la famille de courbes : 
 / 
 /_ sin� 1   ,     /_ 
 ³´?=�«?�� µ 0 
 

 

  
 
 

V- DIPOLE DANS UN CHAMP EXTERIEUR 
 

 

 
 
La force exercée sur le dipôle est : 
 r� 
 r�s � r�u 
 l '(}′�����©	 � }′�����¨	) 

 
Si le champ est uniforme, cette résultante est nulle. 
 

-q +q 

A B O 

¶���· 

Surfaces équipotentielles et 
lignes de champ  
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1- Moment des forces sur un dipôle placé dans un champ  

 
Calculons le moment par rapport à O : 
 
���� 
 �©������  Z '(l}′�����©	) � �¨������  Z 'l}′�����¨	)  

 
En écrivant pour un champ extérieur non uniforme et pour A et B très voisins, 
 }′�����©	 
 }′������	 ( a�′��������    et  }′�����¨	 
 }′������	 � a�′��������  

 
On obtient l’expression : 
 
���� 
 ¥�  Z }′������	 

 
 
Pour un champ extérieur uniforme, le dipôle est soumis à un couple : 
 
 
���� ¸ 0  et  r� 
 0 
 
 

2- Energie d’un dipôle placé dans un champ extérieur 
 
Soit V’ le potentiel dont dérive le champ électrostatique extérieur. L’énergie potentielle 
d’interaction entre le dipôle et le champ électrostatique s’écrit pour les 2 charges composant le 
dipôle : 
 � 
 l� ′�©	 ( l�′�¨	 
Ce qui conduit à : 
 � 
 (¥�. }��′ 

 

Positions d’équilibre  : ¥� et }��′ ont la même direction. 
 

 
VI- CARACTERISTIQUES D’UNE DISTRIBUTION DE CHARGES 
 
Somme des charges non nulle : q 
 
 Distribution du type unipolaire, équivalente à une charge q placée au barycentre G. 
 
Somme des charges nulle : 
 

1- Barycentre des charges positives distinct du barycentre des charges négatives : 

distribution du type dipolaire : p qG G− +=
�������

. 
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2- Barycentre des charges positives confondu avec le barycentre des charges négatives : 
distribution du type quadripolaire : il faut pousser le développement à l’ordre supérieur, 
par rapport au cas précédent. La distribution n’a pas de moment dipolaire. 
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CONDUCTEURS ELECTRIQUES – CONDENSATEURS 
 
 
 
 

I- INTRODUCTION 
 

On peut dire que la liaison métallique, celle-ci même qui assure la cohésion du solide, implique 
des électrons libres qui distinguent les conducteurs des isolants.  
Dans les isolants, les électrons des couches externes des atomes forment des liaisons covalentes 
ou ioniques. Les électrons sont liés et s’écartent très peu de « leurs » atomes.  
Dans les conducteurs, en revanche, une partie des électrons est libre de se déplacer et assure la 
cohésion du solide. Les atomes ayant libéré des électrons, le conducteur peut être considéré 
comme un réseau de charges positives dans un bain d’électrons libres. 
 
Bien que le conducteur présente des charges libres, il est électriquement neutre.  
 
On peut le charger mais, comme on le verra, ces charges à l’équilibre se mettent à la surface. Les 
charges libres impliquent des propriétés électriques et optiques intéressantes. 
 

II- CONDUCTEUR EN EQUILIBRE ELECTROSTATIQUE 
 

1- Définition 
 

Un conducteur est dit en équilibre électrostatique, s’il n’est le siège d’aucun mouvement 
d’ensemble de charges. 
 
C’est quoi un mouvement d’ensemble ? 
 
C’est un mouvement dirigé de l’ensemble des charges. A ne pas confondre avec le mouvement 
aléatoire  des électrons libre en agitation thermique, mouvement qui existe toujours à température 
finie, mais qui n’implique pas de courants électriques.  
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Avec un mouvement d’ensemble, on a un courant. Ce courant a une densité qui s’écrit : 
 ¹� 
 n��� 
 

où n et ��� sont respectivement la densité de charge et la vitesse (statistique) des électrons.  
 
Le courant électrique a une intensité donnée par le flux de la densité de courant : 
 

º 
 T ¹�U  . �S����� 

 

 
 
La loi d’Ohm locale s’écrit : 
 ¹ ��� 
 » }��  

 

Où » est la conductivité du matériau conducteur. 
 

�S����� 

¹� 

Vitesses des électrons dans un 
mouvement d’ensemble 

Vitesses des électrons en 
 agitation thermique 
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Un conducteur en équilibre électrostatique doit avoir   ¹ ��� 
 0. 
 
 

2- Propriétés d’un conducteur chargé 
 ¹ ��� 
 0  implique  } ���� 
 0 
 
Avec  $���. }�� 
 n�I 

 
On a : n 
 0 
 
Le conducteur ne peut donc contenir des charges en volume. Etant chargé, le conducteur porte 
des charges en surface avec une densité σ. En fait, si l’on introduit des charges dans le 
conducteur, celles-ci migrent vers la surface. 
 

Par ailleurs, } ���� 
 0 implique un potentiel constant. 
 
 
Résumons : Dans le conducteur 
 

0

0

E

V cte

ρ
=
=
=

�

 

 
 

3- Champ au voisinage d’un conducteur : théorème de Coulomb 
 
Prenons une petite surface fermée dont une partie est plongée dans un conducteur en équilibre 
électrostatique, et appliquons le théorème de Gauss. 
 

 
 
 

�S� 

}�� �S� 

�S� 

} 
 0 

�S 
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�Φ 
 �Φ� � �Φ� � �Φ� 
 �Φ� 
 0 
 �Φ� 
 0 
 �Φ� 
 }��. �S�������� 
 } �S� 
 p�S�I  

 
Dans cette équation,  les 2 surfaces élémentaires sont identiques. On a donc en tout point M 
proche de la surface : 

( ) ( )
0

E M n M
σ
ε

=
� �

 
 ?���
	 est le vecteur unitaire collinaire à �S�����, en M. 

 
Cette équation avec ses hypothèses, donnant le champ électrostatique au voisinage d’un 
conducteur chargé, constitue le théorème de Coulomb. 
 
 
III- REPARTITION DES CHARGES SUR UN CONDUCTEUR 
 
Prenons d’abords une sphère conductrice de rayon R.  La charge que porte ce conducteur se 
répartit de façon uniforme. 
 p 
 f4d¼� 

 
A l’extérieur, à une distance r du centre de la sphère, le champ électrostatique est : 
 }�� 
 p¼��I/� ^0����� 
 
A l’intérieur, le champ est nul. 
 
Au voisinage du conducteur, on retrouve le théorème de Coulomb :  
 }�� 
 p�I ?�� 

 
Prenons maintenant un conducteur quelconque. 
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La densité de charge décroît avec le rayon de courbure. On a donc : 
 p� ½ p� ½ p�  et  }� ½ }� ½ }�. Mais   � 
 ³´?=�«?��. 
 
Cette concentration des charges aux faibles rayons de courbures représente l’effet de pointe. Le 
champ électrique est plus important là où le rayon de courbure est faible. 
 
 
IV- PRESSION ELECTROSTATIQUE 
 
Soit un conducteur quelconque chargé en équilibre électrostatique. 
 

 
 

La surface du conducteur est S. C’est la somme de dS et de Σ.  
Vu d’un point très proche de dS, cet élément dS apparaît comme un plan créant alors : 
 }aU������� 
 p2�I ?�� 

 
Le champ créé par toute la surface S est : 
 }U����� 
 p�I ?�� 

 

Le champ créé par ¾  est donc : 

dS 

Σ 

}¿����� 

p� 

p� 

p� 
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 }Σ
����� 
 }U����� ( }aU������� 
 p2�I ?�� 

 

Les charges de ¾ exercent donc une force sur les charges de dS, qui vaut : 
 r 
 p2�I p�S 

 
D’où l’expression de la pression électrostatique : 
 

( )2

02

MdF
P

dS

σ
ε

= =  

 
Cette pression se manifeste si on pose une feuille métallique sur un matériau conducteur chargé. 
La force soulève la feuille. 
 

 
 
V- CAPACITE D’UN CONDUCTEUR 
 
Si on fait passer le conducteur d’un état de charge à un autre, avec entre l’ancien état, charge et 
potentiel, et le nouveau : 
 p ′ 
 Àp 
 
On a : 
 

f′ 
 T Àp �SU 
 Àf 

 

� ′ 
 T Àp�S4d�I/U 
 À� 

 
On voit que la charge et le potentiel sont proportionnels. Il existe donc un rapport constant entre 
la charge et le potentiel, qui permet d’introduire une propriété du conducteur appelée capacité. La 
capacité du conducteur est : 
 

r� 
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Q
C

V
=  en Farads 

 
On peut voir facilement que pour un conducteur sphérique, on a : 
 k 
 4d�I¼ 
 
Elle ne dépend que de la géométrie du conducteur. 
 
 
VI- PROPRIETES DES CONDUCTEURS AYANT UNE  CAVITE 
 
Les charges se mettent-elles sur la paroi interne ? 

 
 

Supposons que le volume de la cavité ne contient aucune charge.  
Tenant compte du fait que le conducteur est équipotentiel et que le potentiel ne peut pas 
présenter d’extremum dans la cavité, il ne peut y être que constant. Cela implique que le champ 
électrostatique est nul dans la cavité. 
 
Appliquons maintenant le théorème de Gauss pour la surface S indiquée sur la figure. 
 

Φ 
 X E���. dS�����
Â 
 0 
 l�L��I  

 
La surface interne du conducteur ne porte donc aucune charge. Si le conducteur est chargé, les 
charges sont sur la surface externe. 
 
 

0

0, sur la paroi de la cavité

E

V cte

σ
=
=
=

�

 

 
Mettons une charge q négative dans la cavité. 
 
 

S Cavité 
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Φ 
 X E���. dS�����
Â 
 0 
 l�L��I 
 l � l′�I  

 
Cela montre que la surface interne porte une charge q’ positive. Nécessairement la surface externe 
porte une charge –q’. 
 
Relions le conducteur à la terre. 
 

 
Les charges externes disparaissent, sans influence sur la cavité. L’extérieur n’a pas d’effet sur ce 
qui se passe dans la cavité. C’est l’idée de base de la Cage de Faraday. 
 
 
VII- SYSTEME DE CONDUCTEURS 
 

1- Phénomène d’influence 
 
Approchons une charge positive d’un conducteur neutre. Cette charge crée un champ qui 
modifie la répartition des charges dans le conducteur. Celui-ci devient chargé par influence. Cette 
influence n’est que partielle. Les lignes de champ ne sont pas toutes reliées au conducteur. 

S 
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Si on met la charge dans la cavité d’un conducteur, là l’influence est totale. Les deux conducteurs 
suivants sont en influence totale. Initialement le conducteur externe est neutre et le conducteur 
interne chargé positivement. 
 

 
 

 
2- Théorème des éléments correspondants 

 
Soit 2 conducteurs en influence. 
 
 

 
 

Les surfaces  Ss et  Su du tube de champ sont appelées éléments correspondants. Appliquons le 
théorème de Gauss à la surface qui se ferme à l’intérieur des conducteurs. 
 

Ss Su 
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Φ 
 0, soit  ls 
 ( lu, pour les charges portées respectivement par les surfaces  Ss et  Su. 
 
Le théorème des éléments correspondants dit que les charges portées par ces éléments sont 
opposées. 
 

3- Coefficients de capacité et d’influence 
 

Soit un ensemble de n conducteurs en équilibre électrostatique dans l’espace. 
Chacun porte une charge et se trouve à un potentiel. On a : 
 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

...

...

.

.

...

n n

n n

n n n nn n

Q C V C V C V

Q C V C V C V

Q C V C V C V

= + + +
= + + +

= + + +

 

 

Les iiC  sont des coefficients de capacité pour les conducteurs correspondant et les ij
i j

C
≠

 sont les 

coefficients d’influence entre le ième et le jème conducteur : ij jiC C= . 

 
 
VIII- CONDENSATEURS 
 
Il s’agit de deux conducteurs en influence totale. L’un constitue l’armature interne et l’autre 
l’armature externe. 
 

 

 
 

L’armature interne porte la charge f� et se trouve au potentiel  ��. L’armature externe est au 

potentiel �� et porte la charge  f� 
 f′� � f′′�. f′�  est répartie sur la surface interne et f′′� sur 

la surface externe. 
 

f� �� 

f� 

�� 
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On a les relations : 

1 11 1 12 2

2 21 1 22 2

Q C V C V

Q C V C V

= +
= +

 

 
Il existe une relation entre les coefficients que nous allons établir. 
 

Soit l’expérience suivante : %" 
 Ã. 
 
Ce qui se traduit par : f� 
 k���� 

 f� 
 k���� 
 f′� 

 
 
Appliquons le théorème de Gauss en prenant la surface S indiquée sur la figure. 

 
 
 
 
 

On a : 

Ä 
 X }��. �S�����
U 
 0 
 f� � f��I  

 
Ce qui implique : k�� 
 (k�� 

 
 
 
 

Considérons maintenant l’expérience  
%! 
 %" 

 

f� �� 

f� 

�� 

S 
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Cela consiste simplement à relier les 2 conducteurs. 

 

Ä 
 X }��. �S�����
U 
 0 
 f��I  

 
Ce qui implique : k�� 
 (k�� 

 f� 
 �k�� � k��	 �� 
 

Le système constitue électriquement un seul conducteur de capacité : 
 k ′ 
 k�� � k�� 
 
Résumons, en tenant compte des relations entre les coefficients : 
 f� 
 k����� ( ��	 
  f� 
 (f� � k′�� 

 
1- Condensateur plan 

 
 
 

 
 

}�� 

e 

z 

f� �� 

f� 

�� 

S 
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Le champ entre les 2 plaques est  }�� 
 Å~{ ������. 
On peut donc déterminer le potentiel électrostatique et en déduire la tension entre les armatures. 
 
D’où la capacité : 

0S
C

e

ε=  

 
2- Condensateur cylindrique de hauteur h très grande par rapport aux rayons 

 
Il s’agit de 2 conducteurs de forme cylindrique concentrique, entre lesquels il y a le vide. Les 

rayons respectifs des cylindres intérieur et extérieur sont : ¼� et ¼� 
 

 
 

Avec la même procédure, on trouve : 
 

0

2

1

2

ln

h
C

R

R

πε=  

 
3- Condensateur sphérique 

 
On trouve : 
 

0 1 2

2 1

4 R R
C

R R

πε=
−  

 
4- Association de Condensateurs 

 
 En série, on trouve : 

1 1

i iC C
=∑  

 En parallèle, on trouve : 
 

i
i

C C=∑  

 

h 

f� 
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5- Energie 
 

� Rappel 
  
L’énergie potentielle d’un conducteur portant une charge q au potentiel V : 
 

2p

qV
E =  

 

L’énergie répartie dans l’espace où règne un champ E
�

 : 
 

2
0

1

2p espace
E E dε τ =  

 
∫∫∫  

 
 
 

2
0

1

2
Eε  est la densité d’énergie électrostatique. 

 
� Energie d’un condensateur 

 
L’énergie électrostatique des 2 conducteurs est : 
 }¡ 
 12 �f��� � f���	 
  12 k��� ( ��	� � 12 k′��� 

 
On voit d’après cette expression que l’on ne récupère qu’une partie de cette énergie lorsque l’on 
relie les 2 armatures. L’énergie récupérable d’un condensateur est donc : 
 

 
 }¡ 
  �� k��� ( ��	�
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DIELECTRIQUES 
 
 

I- LES ISOLANTS 
 
Dans les isolants, les électrons des couches externes des atomes forment des liaisons, soit 
covalentes, soit ioniques. Dans ces liaisons, l’électron ne s'éloigne jamais de l'atome dont il est 
issu, tout au plus s'en écarte-t-il pour atteindre les atomes premiers voisins. Les électrons sont 
donc localisés dans une région très restreinte de l'espace. Il n’y a pas d’électrons mobiles. 
 
 
II- POLARISATION 
 

1-  Définition 
 
C’est la densité de moment dipolaire : 
 

dp
P

dτ
=
�

�
 P en 2.Cm−  

 
Il faut distinguer les diélectriques polaires des non polaires. 
 

2- Origines de la polarisation 
 
 Electronique : 

0 é locP N Eε α=
� �

 

 
 Ionique : 

0 i locP N Eε α=
� �

 
 

Où }��ÆÇ¤ est le champ électrique local. 
 
 
III- POTENTIEL CREE PAR DES CHARGES DE POLARISATION 
 
On part de l’expression du potentiel créé par un dipôle élémentaire. On trouve : 
 

( )
0

1 . .

4Pol

S D

P n P
V M dS d

PM PM
τ

πε
 −∇= + 
 
∫∫ ∫∫∫
� � ��

�
 

 
Par analogie, on détermine des charges de polarisation dont les densités sont :  
 

.pol Pnσ =
� �

    et    ( ).pol Pρ = − ∇
� �

. 

 
Il s’agit de charges fictives. 
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IV- CHAMP ELECTROSTATIQUE 
 
Il suffit d’écrire le champ créé par les distributions que l’on vient de définir : 
 

( ) 3 3
0

1

4
pol pol

Pol

S D

PM PM
E M dS d

PM PM

σ ρ
τ

πε
 

= + 
  
∫∫ ∫∫∫

����� �����
�

�  

 
V- INDUCTION 
 

0D E Pε= +
� � �

 

 
Equation de Gauss locale : 
 

. libreD ρ∇ =
� �

 

 
Permittivité et susceptibilité électriques d’un diélectrique : 
 

0 eP Eε χ=
� �

( )0 01 e rD E E Eε χ ε ε ε= + = =
� � � �
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