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ELEMENTS MATHEMATIQUES
POUR P’ELECTROMAGNETISME

Les charges électriques peuvent étre réparties sur une ligne, une surface ou dans un volume. Elles
peuvent aussi présenter des éléments de symétrie. Nous verrons que les champs qu’elles créent
dépendent en général de plusieurs directions et présentent des symétries.

D’ou la nécessité et I'intérét d’'une connaissance des fonctions vectorielles a plusieurs variables.

L’analyse vectorielle est indispensable pour traiter des champs dans I’espace, et aussi dans le
temps en général dans le cadre de ’Electromagnétisme.

Nous allons introduire des outils mathématiques, qu’il faut bzen considérer en tant qu’outils, qui vont

cependant prendre progressivement plus de signification avec 'avancement des concepts et des
notions physiques.

I- CHAMP SCALAIRE ET CHAMP VECTORIEL
On rapporte Pespace a un repére cartésien (0xq, 0 x5, 0x3).
1- Définition
Pour définir un champ scalaire, il suffit d'un nombre. Exemple : la masse, la charge électrique...

Un champ scalaire f est en général variable le long des directions de I'espace. En un point
M (x4, %5, x3), ou (X1, X3, X3) sont les coordonnées cartésiennes de M,

OM = X181 + xp€; + x383
ona:
fM) = f(xq,x2,x3)
Pour définir un champ vectoriel, un nombre ne suffit pas. Il faut ajouter orientation, c’est-a-dire

une direction et un sens. Exemple : la vitesse, la force. ..
Un champ vectoriel varie aussi en général avec les coordonnées de I'espace :

cd - - -
V(x1,%2,x3) = Vi(xq, %2, X3)€1 + Vo (X1, X2, X3) €5 + V3(x1, X2, X3) €3

Pour les non initiés, il faut tenir compte de cette difficulté : comprendre qu’un scalaire n’est pas
orienté selon une direction, lorsque ce méme scalaire varie selon cette direction.

2- Dérivées partielles

Les dérivées partielles caractérisent la variation locale d’une fonction a plusieurs variables :
pentes. (Les fonctions concernées sont différentiables)
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Pour voir uniquement le comportement d’une fonction selon une direction, il faut « oublier » sa
variation selon les 2 autres directions de I'espace.

of 1. . : . » . .
Py dérivée partielle par rapport a x;. On dérive la fonction en considérant X, et X3 constants
1

d e . N ‘s . Sz
% : dérivée partielle par rapport a x,. On dérive la fonction en considérant x; et X3 constants
2

of .. . : . » . .
Py dérivée partielle par rapport a x3. On dérive la fonction en considérant Xy et X, constants
3

3- L’opérateur v

C’est un vecteur dont les composantes sont les 3 opérations de dérivées partielles. Il agit sur les
champs.

o . a _ 8

= —e&+—e +=—
9x; - 0x, ° 0x3

—

€3

AW

Appliqué sur un champ scalaire, cet opérateur génere un champ vectoriel appelé gradient :

of _, of _, of _,
0x; et dx, B 0x3 és

vf =

4- Différentielle

On suppose Iexistence (Pfaff).
_of of of
df = F dx, + F dx, + oxs dxs

Constatant que les dx; sont les composantes du vecteur déplacement,
—_—
dOM = dxle—l) + dee—z> + dx36_3> 5

on peut voir facilement que la différentielle de fest un produit scalaire :

df =Vf. dOM
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II- COORDONNEES CARTESIENNES

X3‘
M
® ; OM = X8 + %8 + &
) : * f= f(X11X21X3)
0 ézi ,’/ Vv :\7()(1!)(2!)(3)

Le vecteur déplacement élémentaire :
dM = dx, &, + dx, 8,+dx; &;
L’élément de volume :
dt = dx;dx,dx;

Vecteur gradient d’un champ scalaire f(xq, X2, X3) :

of ~ 0 . Of
3

Vf= +
f 0x4 = 0%, é2 0x3

-
Divergence d’un champ de vecteurs V(xq, x5, x3) :

V(x1,%2,x3) = Vi(xq, X2, X3)€1 + Vo (%1, %2, X3) €, + V3 (X1, X5, X3) €3

avy, av, av.
1 2, 93

V.V =
0x;  0x, Ox;

Rotationnel d’un champ de vecteurs V(xq, X2, X3) :

& & &
VAT = <6V3 GVZ) . _<6V3 avl) s, (GVZ 6V1> 3 d d 0
0x; O0x, 0x;

0x, 0xs

0x; 0x;

dx; 0Ox,
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Le laplacien d’un champ scalaire f(xq, X5, X3) :

_0f O O

- 2 2 2
ox; 0x; 0x3

Af

Le laplacien d’un champ de vecteurs V(xq, %2, %3) :

AI—/ = AVlé)l + AVZé)Z + AVgé)g
C’est-a-dire :

. 0%V, 0%V, 0%V;\ . 0%V, 0%V, 0%V, .,
AV = 7t 53 2 | €1 7t == 2 | €2
ox;  0x;  0x3 ox;  0x;  0x3

III- COORDONNEES CYLINDRIQUES

“

OM =r1e, + x3e;3
Le vecteur déplacement infinitésimal :
dM = dré, + rd0 eg+dx; é;
L’¢élément de volume :

dt = drrd6 dxs

Vecteur gradient d’un champ scalaire :

92V,

92V,

2
0x;

2
x5

a2V,
+ 3) &,

2
0x35
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ge_0f, Of . Of .
Vf—aer-l—%EQ-l—a—x?)ers

Divergence d’un champ de vecteurs :

" Or  rdf  oxs

Rotationnel d’un champ de vecteurs :

e, Tréy &
VW==-|— — —
r{or 00 0x3
i 1Ve Vs
Le laplacien d’un champ scalaire :
of 1 9%f 09%f

10
Af—;a(ra)ﬂ—zﬁ*axg

Le laplacien d’un champ de vecteurs :

= _ V an - Vg 6V - -
AV = (A - rzae) g + (AVG — %42 TZ;@) 8y + AV,8,

IV-  COORDONNEES SPHERIQUES

X3

M =r&

dM =drg + rddg + rsind dp g
X
2, f=1(r9,9)

V=V(r,¢,6)

Page 9
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Le vecteur déplacement infinitésimal :

dM = dr 8, + rdf 8 + r sin dg €p

L’élément de volume :

dt = r? sinfdr dfdo

Exemple d’une sphere de rayon R

R rm 21 4
D= f f j r? sinfdr dfde = = 7R3
0 Jo=0/p=0 3

Vecteur gradient d’un champ scalaire :

of . 1of . . of

Vf= ar " "7 r sinfdg So

Divergence d’un champ de vecteurs:

Y7 16(r21/;)+ 1 9(sinf Vp) 1 9v,
T r or r sind 00 r sinf 0¢

Rotationnel d’un champ de vecteurs:

- - . -
€ T eg T1sinde;g

- — 1 0 0 0
VAV = ——|>- — P
r2sing |0r 00 1)

V. rVy rsinbl,

Le laplacien d’un champ scalaire :

2 2
A = (2 + =L+ 2L

r2 or or r 2sinf 062 = Jx2

2
Af :ii(rzij+ 1 i(sin@£j+ 1 ot
2 &) (2sing 99 90) 2sing d¢2

Le laplacien d’un champ de vecteurs

AI_/I (AVT—E— Vg

r2  r2960

v,
r200

)&+ (AVy — 2+ 255 8y + AVsE,
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V- LES INTEGRALES SPATIALES

1- Circulation d’un champ de vecteurs

On appelle circulation du champ I_/)(M ) le long de la courbe C, Iintégrale :

r=fl7(M).Hi
C

La courbe C doit étre orientée. La circulation I" dépend en général du chemin suivi et cela a des

i
conséquences intéressantes en Physique. On reconnait le travail mécanique si le vecteur V(M)
correspond a une force.

V(M)

d

Sila courbe Cest fermée, on note cette intégrale :

r=2§l7(M).EZ

Pas de panique | Les problémes physiques traités en Electrostatique de 1 année se raménent
souvent a des situations ou cette intégrale se calcule tres simplement. Elle se réduit a I'intégrale
d’une fonction scalaire d’une seule variable.

2- Flux d’un champ de vecteurs

a- Surfaces

1, . , P — . . N
Le vecteur surface élémentaire est donné avec un vecteur unitaire 1 perpendiculaire a la surface
au point considéré.

dsS =ds

. , - . , . , .
- Sila surface est fermée, 1 est orienté par convention vers I'extérieur.
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- Pour une surface non fermée, lorientation du contour sur lequel

s’appuie la surface définit I'orientation de 7 : on utilise la régle du tire
bouchon de Maxwell.

—

b- Flux

On appelle flux du champ vectoriel V(M) a travers la surface S, I'intégrale :
® = j j V(M).ds
S

Pas de panique | Les probléemes physiques traités en Electrostatique de 1 année se raménent
souvent a des situations ot V(M) est constant sur la surface d’intégration.

VI- THEOREMES
1- Théoreme de la divergence ou de Green-Ostrogradsky

S est la surface fermée qui délimite le volume D.
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_Ujv.v)dr=#l7.d§
D )

2- Théoréme du rotationnel ou de Stokes

Cest la courbe (fermée) qui délimite la surface S.

JJ(V’AV).E?=§£I77

S Cc

3- Théoréme du gradient

fofodT: [ffﬁ

VII- FORMULES LOCALES
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VIII- ANGLE SOLIDE

- . . . . oM
Soit la surface dS centrée autour du point M. O est le point d’observation : U = TR
I’angle solide élémentaire pour voir I'élément 45 a partir du point O est :

ds i -2
dQ = , avec dS = dSn -
r? n
-
ds u
M

L’angle pour observer une surface § finie :
IX-
ds (n.u)
o= Jl ==
S r

On peufimontrer facilement que :

- L’angle solide pour observer un plan infini est égal a 2.
- Et que pour observer une sphére (tout I'espace) I'angle solide
correspond a 47r.

L’unité de 'angle solide est le stéradian.
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CHAMP ELECTROSTATIQUE

I- CHARGES

La charge électrique est une propriété scalaire des particules élémentaires. Elle peut étre positive,
négative ou nulle, et s’exprime en Coulomb (C). C’est une grandeur quantifiée, c’est-a-dire que
toute charge O est telle que |Q] =ne, ot e =1,6. 1071°C estla charge élémentaire, et # un
entier naturel.

La charge peut étre répartie de 2 manieres : discréte ou continue.

Répartition discréte

q=ZQi
i

Répartition continue

- Distribution volumique

dr

Au voisinage d’un point P du volume D, on a la densité :

dq
p(P) = =

q= fDﬂ p(P)dt

- Distribution surfacique

La charge de tout le volume D est :

Au voisinage d’un point P de la surface §, on a la densité :

dq
pP) = —
a(P) 7S
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v

La charge portée par toute la surface § est :

q =ffa(P) ds
s

- Distribution linéique

dl C

v

Au voisinage d’un point P de la ligne C on a la densité :

dq
AP) = —
(P) 0

La charge portée par toute la courbe C est :
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q= CfA(P) dl

II- FORCE DE COULOMB

L’interaction électromagnétique est l'une des 4 interactions fondamentales. En général, les
charges peuvent étre en mouvement et leurs vitesses varient dans le temps. L’interaction
électrostatique est limitée aux charges « considérées » fixes. C’est donc un cas particulier de
I'interaction électromagnétique.

Considérons 2 charges ponctuelles fixes Oa et Og, séparées par une distance Ing :

La force exercée par Oysur Ogest :

1495745 g =8,854.10°=—— (F )

>

F =
A/B 4TEY TR Vil g

745 ¢tant dirigé de A vers B, I'orientation de la force dépend donc des signes des charges.

C’est une loi. Elle se vérifie expérimentalement.

On a évidemment (Principe de I'action et de la réaction — Newton) :

= dads TBA =
F = ——=—-F
BIA™ 4rme, T3 A/B

III- CHAMP ELECTROSTATIQUE CREE PAR UNE CHARGE PONCTUELLE

Si on « factorise la perturbation » que crée U dans I’espace ou se trouve Og, ona:

E, ( B) est le champ électrostatique créé par la charge Up au point B.

De maniere générale, une charge placée en O crée en un point M le champ électrostatique

== _ 0§ — a
E(M)= = 2 _om
( ) 4 0r3 | Orz,our OM =re,

E sexptime en I/ m
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IV- CHAMP CREE PAR UNE DISTRIBUTION CONTINUE DE CHARGE

Il ne faut jamais oublier que ce que donne la loi de Coulomb, de laquelle est issu le concept du
champ électrostatique, est relatif a des charges ponctuelles.

Comment faire alors pour les charges réparties ?

L’idée est d’assimiler le champ élémentaire créé par un élément de charge dg au champ créé par
cette charge considérée comme charge ponctuelle :

dq
4TE(T2

dE(M) = U ,ouil estle vecteur unitaire dirigé de la position de dg vers M.

dE (M ) est le champ élémentaire.

dq —

11 suffit d’intégrer sur le domaine chargé, pour avoir le champ créé par la distribution.
Examinons les 3 cas.

1- Distribution sur une courbe C:

dq = Adl
7 =ré,
a
dl C
. M
7
dE

- Adle
E(M)=
( ) i471€0r2
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Exemple : champ créé par un fil infini, a une distance x.

Le champ est perpendiculaire au fil. Car chaque élément 4/a son symétrique par rapport a

Porigine, intersection du fil et de 'axe x.

Etapes du calcul :

-Projeter le champ selon I'axe x.

-Déterminer toutes les variables en fonction d’une seule, par exemple

pas indépendantes.

- Intégrer sur le fil, c’est-a-dire pour 8 de —g a g
On trouve :
— A
E(M)=—-—§
(M)=5&
2- Distribution surfacique
dq = odS
=\ _ ([ 0dSe
E( M) - J] 2
s ATEYN

Exemple : champ créé par un plan infini, a une distance z.

=l
\
\
4

eeeoecoce

eeeeereccccee

6, car elles ne sont

Chaque ¢élément ayant son symétrique par rapport a origine, donc le champ est selon 'axe Oz.
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Etapes du calcul :

- Projeter le champ selon 'axe Ogz.

- Déterminer toutes les variables en fonction dune seule, car elles ne sont pas
indépendantes.

- Intégrer. On peut faire le calcul pour un disque de rayon R et faire tendre ensuite ce
dernier vers l'infini.

On trouve :

Champ électrostatiqug

v

2¢,

Noter la discontinuité du champ pour cette distribution surfacique.

3- Distribution volumique dans un domaine D

dq = pdrt
E(v) =[] g‘;ﬁ.

Le calcul est souvent long et compliqué pour ce type de distributions. Heureusement, il y a
d’autres méthodes (voir plus loin).

V- PRINCIPE DE CURIE

« Lorsque certaines causes produisent certains effets, les éléments de symétrie des causes
doivent se retrouver dans les effets produits ; lorsque certains effets révélent une certaine
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dissymétrie, cette dissymétrie doit se retrouver dans les causes qui leur ont donné

naissance. »
Admirons la puissance du principe !!

Conséquences

Le champ électrostatique doit présenter les mémes éléments de symétrie que les charges qui lui

ont donné naissance. En un point M de Pespace, le champ E appartient aux plans de symétrie

passant par M.

Méthode

11 suffit de trouver 2 plans de symétrie passant par M. Le champ électrostatique est selon la
direction-intersection.

Exemple

Distribution volumique d’un cylindre infini :

r=—=—=—==-§\---7

Direction radiale du champ
électrostatique pour le point M considéré

VI- LIGNES DE CHAMP
1- Définition

Ce sont les courbes tangentes en chacun de leurs points au vecteur champ électrostatique.

E

A

2- Equations
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, , . dx dy dz
En coordonnées cartésiennes : —_— == —
Ex Ey E
, . . ar rdo dz
En coordonnées cylindriques : —_— ==
E, Eg E,
, , . dr _ rdf rsinfde
En coordonnées sphériques : — = =
E, Eg Ey

VII- THEOREME DE GAUSS

Ce théoreme permet souvent un calcul simple du champ électrostatique.

1- Flux du champ électrostatique a travers une surface

Prenons le cas d’un champ créé par une charge ponctuelle.

qu
b =
,U 4meyr?
S

.d§=]sf

q

4me,

avec ds = dsn

Cas d’une charge électrique extérieure a la surface fermée

X-
On considére une charge ponctuelle g placée en O.

i xS

© Said KOUTANI
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—

Ng

dQ =

q

= Q
4me,

S|

ds A

<l

Direction du vecteut:
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> ¥

On voit que le flux dans ce cas est nécessairement nul, tenant compte de P'alternance des signes a
dsS cos @
r2

cause des angles entre M, et U , et de la valeur du rapport |

Cas d’une charge électrique intérieure a la surface fermée

La, le flux est différent de zéro. Et 'angle solide pour voir toute la surface fermée est égal a 4.

On a alors :

®=#E).d§= q 4n
4,
5

2- Théoreme de Gauss
Le flux du champ électrostatique a travers une surface fermée § est égal au rapport de la charge

intérieure Qjne a5, sur la constante &g .
Ce qui s’écrit :

#E.df‘:@
€o
S

Intérét :
Ce théoreme sert en particulier au calcul du champ électrostatique.

Procédure :
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- Déterminer les orientations de E dans I'espace. Le principe de Curie est d’une grande
utilité.

- Trouver les surfaces par rapport auxquelles le champ est parallele ou perpendiculaire. Ce
qui permettrait de déterminer la surface fermée impliquant une grande économie de
calculs.

- Calculer l'intégrale. Et finalement en déduire E.

3- Expression locale du Théoréeme de Gauss

#* ds = ff (V.E) dr—ff (V.E) dr = %Zt fffpdr

[’expression ci-dessus est vraie quel que soit le couple (S, D). On a donc :

vE=L
&o

C’est 'une des équations locales de ’Electrostatique.

VIII- CIRCULATION DU CHAMP ELECTROSTATIQUE

Charge ponctuelley
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=
=

fﬁdi—fﬁd*— a_(rd
B ' r_47'[€0 r3
c c c

Avec 72 =712  qui implique : 7.d7 =rdr,ona:

S dr 118
fE.dl=— 7 121 H
drtey ) r2 0 Ameglrl,,
c C

Sila courbe Cest fermée et S une surface s’appuyant sur C':

ds

Remarquer l'orientation de la
surface par rapport a celle du
contourC.

Avec le théoréme de Stokes, on déduit de I'équation précédente :

ff(ﬁAE).E:o

s
Quelque soit le couple (C, S), ces intégrales sont nulles. On a donc :
VAE =0
Cette équation locale est 'une des équations de I’Electrostatique.

La conséquence importante de I’équation ci-dessus est existence d’une fonction scalaire 17 telle
que :
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E=-VV
7 est appelé potentiel électrostatique. 11 s’exprime en Volts ().
Cette fonction scalaire est continue a 'interface entre 2 milieux différents.
IX- EQUATIONS DE PASSAGE DU CHAMP ELECTROSTATIQUE ENTRE
DEUX MILIEUX
Composante tangentielle :

On montre qu’a I'interface des deux milieux :

- La composante tangentielle du champ électrostatique est toujours continue.

La surface X sépare deux milieux 1 et 2. Les points M; et M, sont trés proches, il en est de
méme pour l'autre couple M, et M3.

Examinons la continuité, en considérant la circulation le long de la courbe C.
- -
E.dl=20

c
Ce qui implique :

E,.M;M, + E,.M5M, = 0
E.t—E,.t=0
Composante normale :

Soit OV un petit volume centré sur le point M. Appliquons le théoréeme de Gauss sur la surface
englobant .
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La hauteur du cylindre est considéré comme infiniment petite par rapport rayon.

= S — - —h:@
{fEdS=(E,- E)o s "

S 0 EO

Ce qui montre que la composante normale de E est discontinue si la surface de séparation qu’il
traverse présente une densité de charge surfacique. Comme exemple, le milieu 1 peut étre le vide
et le milieu 2 un conducteur chargé.

_Ch
(EZn_Ein)_go

X- POTENTIEL ELECTROSTATIQUE

Le potentiel a été introduit a partir :

1)
I

I
<
<

En coordonnées cartésiennes on a :

av av av = TV 2 37
AV = odx+ody +5-dz = (VV).dM = —E.dM

E[ﬂJE("_V] ot ES:-[G_V]
0%, 0X, 0%,

B B
fdv=v, -V, =-[ Edr
A A

Si on calcule simplement la primitive V:—I Edr, il apparait une constante d’intégration 2a

déterminer avec les conditions aux limites, du type :

© Said KOUTANI said@koutani.net Page 27



-V (°°) =0 lorsqu’il n’existe pas de charges a Iinfini.

La continuité du potentiel en des points particuliers du systeme étudié.

1- Potentiel créé par une charge ponctuelle a une distance r

-9
VM=
0

On va d’abord montrer que les surfaces équipotentielles sont toujours perpendiculaires aux lignes

de champ.

Exemple d’une charge ponctuelle positive :

'

! VoY

P Y

Y ! 1

>O i [ ! ,I 1
\ \ '

v !

. Surfaces  équipotentielles :  sphéres
Lignes de Champ concentriques

2- Surfaces équipotentielles
Sur la surface équipotentielle on a :
dv = -E.dM =0

On voit donc que les lignes de champ sont perpendiculaires aux surfaces équipotentielles en tout

point.
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E

V= constante

3- Potentiel créé par une distribution continue de charge

Adl
Distribution linéique sur une courbe C': \ ( M ) = I
= ATE,
odS
Distribution surfacique sur S : V( M) :_U
< ATESN
pdr
Distribution volumique dans un domaine D : V( M) = J:”
~ ATEl

4- Equation de Poisson

11 suffit d’injecter dans I’équation locale de Gauss 'expression : E=-0V .

==L
&

oV 9V oV _ p
+o 4

o 0% 0% &

En coordonnées cartésiennes:
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ENERGIE ELECTROSTATIQUE

I- TRAVAIL DES FORCES ELECTROSTATIQUES ET ENERGIE
POTENTIELLE

Le travail élémentaire de la force électrique s’écrit :

éW:dW:o[gdgﬁ E de E q%

Le travail effectué lors du déplacement d’un point 4 a un point B est donc :

W=d V- V)
La circulation de la force est nulle, car :
%ﬁ .di=q3§1§ dl=0
C c

- -
Ce qui implique que F = —VE&, , ou &, est une fonction scalaire correspondant a I’énergie
potentielle.

Mais par définition, énergie potentielle de la charge est le travail fourni par I'expérimentateur
pour 'amener de 'infini a sa position. Cette énergie est restituée a I'expérimentateur au retour de
la charge a sa position initiale.

Pour une variation élémentaire, on a :

dg, = —sW

Iénergie potentielle d’une charge dans un champ extérieur est :
Ep=qV +K

La constante K est nulle, s’il n’y a pas de charges a l'infini.

II- DISTRIBUTIONS DE CHARGES
1- Distribution discréte

Pour N charges ponctuelles g;, on montre facilement que I’énergie potentielle s’écrit
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N N N
€p = 2 - 47r£0rl] 27 a ‘
l

i

V (M;) est le potentiel au point M;.

2- Distribution continue

Lorsqu’il s’agit de distributions continues de charges, la contribution de dg est :

1

Pour une charge finie répartie de facon continue :

E, =%IAV dl pour une distribution linéique
C

=%” oV dS pour une distribution surfaciqt
S

E, :%Jﬂ pV dr  pour une distribution volumiq

C’est cette énergie qui peut nous expliquer la cohésion du cristal NaCl, constitué d’un
enchainement régulier de charges positives et négatives.

ITI- Localisation de ’énergie électrostatique

Prenons le cas d’une distribution volumique de charges dont I’étendue est finie, et étendons
I'intégration a tout 'espace :
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& - > &
Epz—O#VE.dS+—O fﬂ E%dt
2 2
S

espace

Or la premiére intégrale est nulle car le potentiel est nul a I'infini. On a donc :

€o
= [[] 5

espace

D’ou la densité d’énergie stockée dans ’espace :

dt 2
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DIPOLE ELECTROSTATIQUE

I- DEFINITIONS

1- Moment dipolaire

Un dipdle électrostatique est un systeme de deux charges (_q, +CI) séparées par une distance d.

On caractérise le dipdle par son moment dipolaire, celui-ci est donné par :
p=qdé,
Ou €, est le vecteur unitaire orienté de la charge — vers la charge +.
2- Dipdle permanent
Existence en I'absence d’un champ extérieur. Molécule avec un dipole invariable.
3- Dipdle induit
Le moment dipolaire est nul. Mais un champ électrique polarise I'atome ou la molécule.

Exemple : ’atome d’hydrogene. On dit que I'atome est polarisable. Son moment dipolaire
s’exprime selon :

ou & est la polarisabilité de ’'atome, qui s’exprime en m3.

II- POTENTIEL CREE PAR UN DIPOLE A LONGUE DISTANCE
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11y a invariance autour de I'axe Oz.

VM) = q (1 1)
"~ 4mey \BM AM

1 1
von = —1 (145 “Zeoso) = (14+% +%cose)
 4me,r 4z 7 4rz T 08
On fait un développement limité au 1* ordre en g :
pcos®  p.7

V(M) = =
(M) dmear?  Amegrd

Ce potentiel décroit donc plus vite que celui créé par une charge ponctuelle.

III- CHAMP ELECTROSTATIQUE CORRESPONDANT

E = E/e; + Egeg

dV  pcos@
E‘F = ——=

or  2meyr3

10V psiné
6= " og =

rd0  4meyrs

Ou encore, en partant directement de la relation vectorielle entre le champ et le potentiel :
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1 3(p.AF—1r%p
41e, rd

E =

IV- LIGNES DE CHAMP ET SURFACES EQUIPOTENTIELLES
En coordonnées polaires, rappelons I’équation des lignes de champ :

dr _ rdo

E,  Eg
L’intégration conduit a la famille de courbes :

T =1, 5sin% 0

1o = constante > 0

b

Surfaces équipotentielles et
lignes de champ

V- DIPOLE DANS UN CHAMP EXTERIEUR

La force exercée sur le dipole est :
F=F+F=q (—E”(A) + E”(B))

Sile champ est uniforme, cette résultante est nulle.
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1- Moment des forces sur un dip6le placé dans un champ
Calculons le moment par rapporta O :
My =04 A (—qF(A)) + 0B A (qF(B))
En écrivant pour un champ extérieur non uniforme et pour A et B trés voisins,
E)=E©0)-Z « F(B) =E0)+%
On obtient 'expression :

Mg =§ AE'(0)
Pour un champ extérieur uniforme, le dipdle est soumis a un couple :
Mgz #0 et F=0

2- Energie d’un dipdle placé dans un champ extérieur
Soit 1”7 le potentiel dont dérive le champ électrostatique extérieur. L’énergie potentielle
d’interaction entre le dipdle et le champ électrostatique s’écrit pour les 2 charges composant le

dipole ;

€=qV'(A)—qV'(B)
Ce qui conduit a :

€=—p.E"

- = A . .
Positions d’équilibre : p et E' ont la méme direction.

VI- CARACTERISTIQUES D’UNE DISTRIBUTION DE CHARGES

Somme des charges non nulle : g

Distribution du type unipolaire, équivalente a une charge ¢ placée au barycentre G.

Somme des charges nulle :

1- Barycentre des charges positives distinct du barycentre des charges négatives :

distribution du type dipolaire : pP=9G G.
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2- Barycentre des charges positives confondu avec le barycentre des charges négatives :
distribution du type quadripolaire : il faut pousser le développement a Pordre supérieur,
par rapport au cas précédent. La distribution n’a pas de moment dipolaire.
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CONDUCTEURS ELECTRIQUES — CONDENSATEURS

I- INTRODUCTION

On peut dire que la liaison métallique, celle-ci méme qui assure la cohésion du solide, implique
des électrons libres qui distinguent les conducteurs des isolants.

Dans les isolants, les électrons des couches externes des atomes forment des liaisons covalentes
ou ioniques. Les électrons sont liés et s’écartent tres peu de « leurs » atomes.

Dans les conducteurs, en revanche, une partie des électrons est libre de se déplacer et assure la
cohésion du solide. Les atomes ayant libéré des électrons, le conducteur peut étre considéré
comme un réseau de charges positives dans un bain d’électrons libres.

Bien que le conducteur présente des charges libres, il est électriquement neutre.

On peut le charger mais, comme on le verra, ces charges a ’équilibre se mettent a la surface. Les
charges libres impliquent des propriétés électriques et optiques intéressantes.

II- CONDUCTEUR EN EQUILIBRE ELECTROSTATIQUE
1- Définition

Un conducteur est dit en équilibre électrostatique, sl n’est le sicge d’aucun mouvement
d’ensemble de charges.

C’est quoi un mouvement d’ensemble ?
C’est un mouvement dirigé de 'ensemble des charges. A ne pas confondre avec le mouvement

aléatoire des électrons libre en agitation thermique, mouvement qui existe toujours a température
finie, mais qui n’implique pas de courants électriques.
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Vitesses des électrons en

Vitesses des électrons dans un agitation thermique

mouvement d’ensemble

Avec un mouvement d’ensemble, on a un courant. Ce courant a une densité qui s’écrit :
- —
J=pV

-
ou p et V sont respectivement la densité de charge et la vitesse (statistique) des électrons.

Le courant électrique a une intensité donnée par le flux de la densité de courant :

1=fff.%"’
S

\¢

La loi ’Ohm locale s’écrit :
] =YE

Ou ¥ est la conductivité du matériau conducteur.
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Un conducteur en équilibre électrostatique doit avoir | = 0.

2- Propriétés d’un conducteur chargé
]_) = 0 implique E=0

Avec

Le conducteur ne peut donc contenir des charges en volume. Etant chargé, le conducteur porte
des charges en surface avec une densité o. En fait, si 'on introduit des charges dans le

conducteur, celles-ci migrent vers la surface.

Par ailleurs, E = 0 implique un potentiel constant.

Résumons : Dans le conducteur

<™ m
1 1 1
o © o
@

3- Champ au voisinage d’un conducteur : théoréme de Coulomb

Prenons une petite surface fermée dont une partie est plongée dans un conducteur en équilibre

¢lectrostatique, et appliquons le théoréeme de Gauss.

E

ds,
ds, |
7 ds
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dq) = dq)l + dq)z + dq)s)

dq)z =0
dq)s) =0
- odS

chl =E)d51 =Ed51 =€_
0

Dans cette équation, les 2 surfaces élémentaires sont identiques. On a donc en tout point M
proche de la surface :

(M) est le vecteur unitaire collinaire 2 dS, en M.

Cette équation avec ses hypotheses, donnant le champ électrostatique au voisinage d’un
conducteur chargé, constitue le théoreme de Coulomb.

III- REPARTITION DES CHARGES SUR UN CONDUCTEUR

Prenons d’abords une sphére conductrice de rayon R. La charge que porte ce conducteur se
répartit de fagon uniforme.

_ Q
4 R?

o

A Pextérieur, a une distance »du centre de la sphére, le champ électrostatique est :

oR? _,
=—u
gr?2 "

Ty

A T'intérieur, le champ est nul.

Au voisinage du conducteur, on retrouve le théoréeme de Coulomb :

- O
E=—n
&o

Prenons maintenant un conducteur quelconque.

© Said KOUTANI said@koutani.net Page 44



La densité de charge décroit avec le rayon de courbure. On a donc :
0, <0y,<0; et By <E, <E; Mais V = constante.

Cette concentration des charges aux faibles rayons de courbures représente I'effet de pointe. Le
champ électrique est plus important la ou le rayon de courbure est faible.

IV- PRESSION ELECTROSTATIQUE

Soit un conducteur quelconque chargé en équilibre électrostatique.

La surface du conducteur est S. C’est la somme de 45 et de 2.
Vu d’un point tres proche de 45, cet élément 45 apparait comme un plan créant alors :

— o
Ed5=—n
0

Le champ créé par toute la surface S est :

Le champ créé par X' est donc :
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— P — _ o —
EZ=ES_EdS=2_n
0

Les charges de X' exercent donc une force sur les charges de 45, qui vaut :

o

F =—odS
2¢& ¢
D’ou I'expression de la pression électrostatique :
_dF_o'(M)
dS  2¢

Cette pression se manifeste si on pose une feuille métallique sur un matériau conducteur chargé.
La force souleve la feuille.

-

V- CAPACITE D’UN CONDUCTEUR

Si on fait passer le conducteur d’un état de charge a un autre, avec entre I’ancien état, charge et
potentiel, et le nouveau :

Ona:

Q = .gkadS =kQ
= [ =

On voit que la charge et le potentiel sont proportionnels. Il existe donc un rapport constant entre

la charge et le potentiel, qui permet d’introduire une propriété du conducteur appelée capacité. La
capacité du conducteur est :
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C = Q en Farads
Y

On peut voir facilement que pour un conducteur sphérique, on a :
C = 4’7-[80R

Elle ne dépend que de la géométrie du conducteur.

VI- PROPRIETES DES CONDUCTEURS AYANT UNE CAVITE

Les charges se mettent-elles sur la paroi interne ?

e

T

Supposons que le volume de la cavité ne contient aucune charge.

Tenant compte du fait que le conducteur est équipotentiel et que le potentiel ne peut pas
présenter d’extremum dans la cavité, il ne peut y étre que constant. Cela implique que le champ
électrostatique est nul dans la cavité.

Appliquons maintenant le théoreme de Gauss pour la surface S indiquée sur la figure.

o= ffiw o=t
€o

S

La surface interne du conducteur ne porte donc aucune charge. Si le conducteur est chargé, les
charges sont sur la surface externe.

, sur la paroi de la cavi

0
cte

< Qm

Mettons une charge ¢ négative dans la cavité.
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Cela montre que la surface interne porte une charge ¢’ positive. Nécessairement la surface externe
porte une charge —¢"

Relions le conducteur 2 la terre.

Les charges externes disparaissent, sans influence sur la cavité. L’extérieur n’a pas d’effet sur ce
qui se passe dans la cavité. C’est I'idée de base de la Cage de Faraday.

VII- SYSTEME DE CONDUCTEURS
1- Phénomeéne d’influence
Approchons une charge positive d'un conducteur neutre. Cette charge crée un champ qui

modifie la répartition des charges dans le conducteur. Celui-ci devient chargé par influence. Cette
influence n’est que partielle. Les lignes de champ ne sont pas toutes reliées au conducteur.
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Si on met la charge dans la cavité d’un conducteur, la I'influence est totale. Les deux conducteurs
suivants sont en influence totale. Initialement le conducteur externe est neutre et le conducteur
interne chargé positivement.

2- Théoreme des éléments correspondants

Soit 2 conducteurs en influence.

Les surfaces Sy et Sp du tube de champ sont appelées éléments correspondants. Appliquons le
théoréme de Gauss a la surface qui se ferme a l'intérieur des conducteurs.
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@ = 0, soit q4 = — qp, pour les charges portées respectivement par les surfaces Sy et Sp.

Le théoréeme des éléments correspondants dit que les charges portées par ces éléments sont
opposées.

3- Coefficients de capacité et d’influence
P

Soit un ensemble de n conducteurs en équilibre électrostatique dans 'espace.
Chacun porte une charge et se trouve a un potentiel. On a :

Q=CM+ GVt G
Q=CM+ G+t G
Q= Cy\+ G4+t GV,

Les q sont des coefficients de capacité pour les conducteurs correspondant et les CU- sont les
i#]

coefficients d’influence entre le ieme et le jeme conducteur : C,j = C:ji .

VIII- CONDENSATEURS

11 s’agit de deux conducteurs en influence totale. L’un constitue 'armature interne et I'autre
Parmature externe.

Q2

Q1 Vi

L’armature interne porte la charge Q1 et se trouve au potentiel V;. L’armature externe est au
potentiel V; et porte la charge @, = Q', + Q",. Q', est répartie sur la surface interne et Q", sur
la surface externe.
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On a les relations :

Q=G+ G\,
Q=G+ GV,

11 existe une relation entre les coefficients que nous allons établir.
Soit ’expérience suivante : V, = 0.

Ce qui se traduit par :
Q1 =Cuuls

Q2 = CpVy = Q’z

Appliquons le théoréeme de Gauss en prenant la surface § indiquée sur la figure.

Q>
V.
2 Q1 vy
rr7z7
Ona:
N +
qb:#E.dSzOle Q2
€o
S
Ce qui implique :
Cy;1 =—Cpy
V1 = Vz

Considérons maintenant ’expérience
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Cela consiste simplement a relier les 2 conducteurs.

Q>

V.
? 0 v, %7

€o

S

Ce qui implique :
Ci2 = =C1q

Q= (Ca1+C2) s
Le systeme constitue électriquement un seul conducteur de capacité :
C = CZl + CZZ
Résumons, en tenant compte des relations entre les coefficients :
Q1= Ci1 (V1 = 12)

Q;=—-Q,+CV,

1- Condensateur plan

-l-—_—»
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Le champ entre les 2 plaques est E= ;?;.
0

On peut donc déterminer le potentiel électrostatique et en déduire la tension entre les armatures.

D’ou la capacité :

2- Condensateur cylindrique de hauteur A trés grande par rapport aux rayons

Il s’agit de 2 conducteurs de forme cylindrique concentrique, entre lesquels il y a le vide. Les
rayons respectifs des cylindres intérieur et extérieur sont : Ry et R,

t
1
1
1
1 h
1
Pan I
1
\ ) v
\\\\—ﬁ
Avec la méme procédure, on trouve :
C= 27E,h
In R
R
3- Condensateur sphérique
On trouve :
c=YERR

4- Association de Condensateurs

En série, on trouve :

En paralléle, on trouve :

C:ZQ
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5- Energie
=  Rappel

L’énergie potentielle d’un conducteur portant une charge ¢ au potentiel [ :

E =

p

av
2

—

L’énergie répartie dans 'espace ou régne un champ E :

e

1 o .
—&,E? estladensité d’énergie €lectrostatique.

=  FEnergie d’un condensateur

L’énergie électrostatique des 2 conducteurs est :
1 1 , 1 2
E, =§(Q1V1 +Q;V3) = EC(Vl - 13) +§C'V2

On voit d’apres cette expression que 'on ne récupére qu’une partie de cette énergie lorsque 'on
relie les 2 armatures. L’énergie récupérable d’un condensateur est donc :

1
Ep = EC(Vl - VZ)Z
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DIELECTRIQUES

I- LESISOLANTS

Dans les isolants, les électrons des couches externes des atomes forment des liaisons, soit
covalentes, soit ioniques. Dans ces liaisons, I’électron ne s'éloigne jamais de 'atome dont il est
issu, tout au plus s'en écarte-t-il pour atteindre les atomes premiers voisins. Les électrons sont
donc localisés dans une région tres restreinte de I'espace. Il n’y a pas d’électrons mobiles.

II- POLARISATION
1- Définition

C’est la densité de moment dipolaire :

11 faut distinguer les diélectriques polaires des non polaires.
2- Origines de la polarisation

Electronique :

IS = NEOO'é _Eoc

Tonique :

OuE loc est le champ électrique local.

III- POTENTIEL CREE PAR DES CHARGES DE POLARISATION

On part de 'expression du potentiel créé par un dipdle élémentaire. On trouve :
1 q‘:ﬁ P'ndS+IJI_D'P o
are, | 7 PM > PM

Par analogie, on détermine des charges de polarisation dont les densités sont :

VPoI(M):

O =PR et ppm:—(i.ﬁ).

11 s’agit de charges fictives.
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IV- CHAMP ELECTROSTATIQUE

11 suffit d’écrire le champ créé par les distributions que 'on vient de définir :

B} PM PM
)= B [ @

V- INDUCTION

Equation de Gauss locale :
LD= IQibre

Permittivité et susceptibilité électriques d’un diélectrique :

— —

P=gX.ED=¢,(1+x.)E=¢¢ E=¢E
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